Balanced binary tree¶
Time: O(N); Space: O(H); easy
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the left and right subtrees of every node differ in height by no more than 1.
Example 1:
Input: root = {TreeNode} [3,9,20,None,None,15,7]
3
/ \
9 20
/ \
15 7
Output: True
Example 2:
Input: root = {TreeNode} [1,2,2,3,3,None,None,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
Output: False
Explanation:
The height of node 1’s right sub-tree is 1 but left sub-tree is 3.
[1]:
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
[2]:
class Solution1(object):
"""
Time: O(N)
Space: O(H), H is height of Binary Tree
"""
def isBalanced(self, root):
"""
:type root: TreeNode
:rtype: boolean
"""
def getHeight(root):
if root is None:
return 0
left_height, right_height = getHeight(root.left), getHeight(root.right)
if left_height < 0 or right_height < 0 or abs(left_height - right_height) > 1:
return -1
return max(left_height, right_height) + 1
return (getHeight(root) >= 0)
[3]:
s = Solution1()
root = TreeNode(3)
root.left = TreeNode(9)
root.right = TreeNode(20)
root.right.left = TreeNode(15)
root.right.right = TreeNode(7)
assert s.isBalanced(root) == True
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(2)
root.left.left = TreeNode(3)
root.left.right = TreeNode(3)
root.left.left.left = TreeNode(4)
root.left.left.right = TreeNode(4)
assert s.isBalanced(root) == False